

Urban Nitrogen Budgets Comparison Across Cities

Katrin Kaltenegger¹*, Xiangwen Fan², Samuel Guéret¹, Monika Suchowska-Kisielewicz³, Wilfried Winiwarter^{1,3}

- ¹ International Institute for Applied Systems Analysis (IIASA), Vienna, Austria
- ² Chinese Academy of Sciences, Shijiazhuang, China
- ³ Institute of Environmental Engineering, University of Zielona Góra, Poland

Urban Nitrogen

- 2050: around 60% of population in urban area (UN, 2018)
- Pollution and potential (Svirejeva-Hopkins & Reis, 2011)
- Nr budgets focus on agriculture
- No consistent approach for urban environment (Winiwarter et al., 2020)

Objectives

- Develop a framework for urban nitrogen budgets
 - Implement as stock and flow model
- Apply to 4 cities (urban and a peri-urban area)
- Characterize system & find patterns through comparison
 - Biggest flows per pool and in overall budget
 - Identification of Nr sinks and sources
 - Flows per capita & per area where relevant
 - Evaluate (environmental) impacts

• Identifying potentials/solutions supporting the development of a circular economy

Zielona Gora Core

Zielona Gora Surrounding

Beijing Core

Beijing Surrounding

Shijiazhuang Core

Shijiazhuang Surrounding

Vienna Core

Vienna Surrounding

Analysis and Indicators

	Vienna Core	Vienna Surrounding	Zielona Gora Core	Zielona Gora Surrounding	Shijiazhuang Core	Shijiazhuang surrounding	Beijing Core	Beijing surrounding
General								
Products Out (% of import) - NUE?	1%	57%	29%	51%	22%	4%	0%	0%
Recycling (% of import)	4%	6%	0%	21%	7%	14%	6%	7%
Agri-Food Chain Indicators								
Self-sufficiency Plant Food	3%	317%	6%	20%	59%	69%	9%	66%
Self-sufficiency Livestock Products	0%	38%	0%	20%	41%	84%	0%	65%
Self-sufficiency Feed	728%	276%	0%	49%	48%	88%	0%	49%
NUE on agricultural land	55%	68%	76%	85%	27%	19%	2%	11%
N surplus [kgN/ha]	62	46	19	16	684	991	446	853
Emission and Deposition								
N deposition per hectare [kgN/ha]	17	13	16	17	37	37	21	45
Emission per hectare [kgN/ha]	110	16	35	2	80	18	132	14

Pathway through the urban area

- Distinct pattern between urban and peri-urban area
 - Agricultural emissions dominate in peri-urban area
- Nr recycling is low
- Nr accumulates in soil or in water
 - Local differences in effect
- Wastewater (treatment) offers a great potential to increase Nr recycling

brain **O**ows

• Higher uncertainties related to the household pool

Conclusion

Q

Developed a framework close to EPNB concept and open source

Learn from each other through comparisons

Identify challenges, potentials and solutions for urban N

Thank you!

Contact/Information:

kalteneg@iiasa.ac.at

uncnet.org

UNCNET – Urban nitrogen cycles: new economy thinking to master the challenges of climate change

Europe – China joint call on Sustainable Urbanisation in the Context of Economic Transformation and Climate Change: Sustainable and Liveable Cities and Urban Areas

> Funded by NCN (Poland), project UMO-2018/29 / Z / ST10 / 02986 NSFC (China), project 71961137011 FFG (Austria), project 870234

References

Svirejeva-Hopkins, A., & Reis, S. (2011). Nitrogen flows and fate in urban landscapes BT - The European Nitrogen Assessment. *The European Nitrogen Assessment*, *12*, 1–22. papers2://publication/uuid/D54990A1-3B35-46EB-BED1-FFCBB28B06A5

UN. 2018. World urbanization prospects: the 2018 revision. New York: United Nations, Department of Economic and Social Affairs, Population Division.

Winiwarter, W., Amon, B., Bai, Z., Greinert, A., Kaltenegger, K., Ma, L., Myszograj, S., Schneidergruber, M., Suchowski-Kisielewicz, M., Wolf, L., Zhang, L., & Zhou, F. (2020). Urban nitrogen budgets: flows and stock changes of potentially polluting nitrogen compounds in cities and their surroundings—a review. *Journal of Integrative Environmental Sciences*, *17*(1), 57–71. https://doi.org/10.1080/1943815X.2020.1841241

